Background:

- Risk stratification is essential in breast cancer for tailoring treatment plans to the individual patient's needs, maximizing the chances of successful outcomes and minimizing unnecessary interventions.
- Retrospective analysis of existing risk stratification tools for early-stage breast cancer revealed their limited efficacy when applied to patients with ILC.
- **Gap in the field:** There is currently not a risk stratification tool that is specific for ILC.

Methods:

- Retrospective review of MD Anderson Cancer Center breast cancer database for patients with stage I-II ILC.
- The study focused on two primary endpoints: Overall Survival (OS) and Distant Recurrence Free Survival (DRFS).
- We utilized univariate and multivariate Cox Proportional Hazard (PH) regression models to assess the statistical significance of all variables.
- The univariate Cox analysis identified prognostic factors, which were further analyzed using backward and stepwise multivariate Cox proportional hazards regression analysis.
- To evaluate the performance of the fitted multivariate Cox PH regression models for OS and DRFS, we randomly divided two-thirds of the data points (n=2,950) into a training dataset (n=1,266), while the remaining one-third constituted the test dataset.
- We assessed the discrimination capacity of each model using Harrell's C-index.

Results:

- We identified 4,216 patients with stage I-III ILC treated at MDACC between 1966 and 2021.
- The median pathological tumor size was 2 cm, and the median number of lymph nodes was one.
- After evaluating various prognostic models, we identified the model with the highest prognostic accuracy for OS and DRFS.
- This selected model demonstrated a Harrell's C-index of 0.704 for OS and 0.718 for DRFS on the training dataset and a Harrell's C-index of 0.702 for OS and 0.671 for DRFS on the test dataset.
- The model incorporated several covariates, including age at the time of diagnosis, number of lymph nodes, pathological tumor size, ER status, tumor grade, ILC histology, and the presence or absence of concomitant LCIS.

The **MDA iLobular PT is the first clinic-pathological risk stratification tool that has been developed specifically for ILC patients**

Future Direction: Combine the MDA iLobular PT with genomic, molecular and tumor microenvironment factors to create a state-of-the-art prognosticator and treatment predictor for early stage ILC

Reference

This presentation is the intellectual property of the author/presenter. Contact them at jamouabbi@mdanderson.org for permission to reprint and/or distribute.