KU LEUVEN

EARLY STAGE INVASIVE LOBULAR BREAST CANCER IS UNDERESTIMATED ON CONVENTIONAL IMAGING INCLUDING MRI Kaat Van Herck^{1,#}, Karen Van Baelen^{2,3,#}, Chantal Van Ongeval⁴, Machteld Keupers⁴, Renate Prevos⁴, Giuseppe Floris⁵, Ines Nevelsteen⁶, Ann Smeets⁶, Thaïs Baert², Sileny Han², Hans Wildiers⁷, Annouschka Laenen⁸,

¹Master Biomedical sciences, KU Leuven, Leuven, Belgium; ²Department of Gynecology and Obstetrics, University Hospitals Leuven, Leuven, Belgium; ³Laboratory for Translational Breast Cancer Research, Department of Oncology, KU Leuven, Leuven, Belgium; ⁴Department of Radiology, University Hospitals Leuven, Belgium; ⁵Department of Pathology, University Hospitals Leuven, Belgium; ⁴Department of Radiology, University Hospitals Leuven, Belgium; ⁵Department of Pathology, University Hospitals Leuven, Belgium; ⁴Department of Radiology, University Hospitals Leuven, Belgium; ⁸Leuven, Belgium; ⁹Department of General Medical Oncology, University Hospitals Leuven, Belgium; ⁸Leuven, Belgium; ⁹Department of General Medical Oncology, University Hospitals Leuven, Belgium; ⁹Department, Belgium; ⁹Department

BACKGROUND and AIMS

- In the western world, invasive lobular carcinoma (ILC) represents 15% of all invasive breast cancers (BC).^{1,2}
- ILC is characterized by loss or dysfunction of adhesion molecule E-cadherin, leading to a unique infiltrative growth pattern that is unlikely to disrupt the normal architecture of the breast tissue.^{3,4}
- This unique growth pattern, combined with the characteristic that ILC typically does not form a palpable mass, makes it challenging to detect on standard breast imaging techniques and to establish an accurate diagnosis.^{1,4}
- Mammography is believed to underestimate ILC, while Magnetic Resonance Imaging (MRI) tends to overestimate the extent of ILC.⁵

The aim of this study is to investigate the correlation between clinical and pathology findings regarding diameter, number of foci and number of adenopathies together with factors affecting

this correlation.

PATIENTS and METHODS

We performed a single center retrospective study in University Hospitals Leuven, Belgium. Patients that met the following criteria were included:

- Female
- Diagnosed between January 2000 and December 2020 with nonmetastatic pure ILC (i.e. not mixed with other histological BC types)
- Received no neoadjuvant therapy

Data on patient and tumor characteristics, pre-operative imaging and pathology were collected for 1029 patients.

	Total	Tumor diameter	Number of foci	Number of adenopathies
Mammography	933	668	921	/
Ultrasound	998	843	/	984
MRI	709	619	703	690
Pathology	1029	1029	1029	1024

Statistical analysis: Imaging and pathology measurements were compared by use of Pearson correlation coefficient, Whitney U test or Chi-square test. Weighted kappa statistics were used to assess agreement.

The number of foci and the number of adenopathies were analysed as ordinal outcomes with categories 0, 1, 2, 3, \geq 4. Since the techniques of mammography and ultrasound have evolved in the past 20 years, different time periods were considered in sub-analyses (2000-2004, 2005-2009, 2010-2014, 2015-2020).

The mean diameter of mammography was 22.50 ± 14.26 mm while that of pathological measurement was 37.14 ± 25.53 mm. Mammography underestimated the tumor size, with an average difference of 14.64 ± 21.15 mm compared to pathology, as shown in the scatter plot and the Bland Altman plot.

Correlation between ultrasound and pathology

The mean diameter estimated by ultrasound (19.08 ± 11.61 mm) was lower than that by pathology (37.26 ± 26.28 mm). The scatter plot and Bland-Altman plot showed that ultrasound significantly underestimated pathology with a mean difference of 18.19 ± 21.66 mm.

Correlation between MRI and pathology

The mean diameter of MRI (27.73 ± 17.85 mm) was lower compared to pathology (37.66 ± 26.65 mm). Similar to mammography and ultrasound, MRI significantly underestimated pathology with a mean difference of 9.93 ± 20.63 mm, which is visualized in both the scatter plot and Bland Altman plot.

Christine Desmedt³, Patrick Neven²

RESULTS DIAMETER

RESULTS NUMBER OF FOCI

Correlation between mammography and pathology

Variable	Statistic	1	2	3
N foci mammography				
1	n/N (%)	666/741 (89.88%)	60/104 (57.69%)	20/40 (50.00
2	n/N (%)	52/741 (7.02%)	34/104 (32.69%)	10/40 (25.00
3	n/N (%)	4/741 (0.54%)	3/104 (2.88%)	7/40 (17.50
>=4	n/N (%)	19/741 (2.56%)	7/104 (6.73%)	3/40 (7.50

There was an **agreement** on unifocality versus multifocality between and mammography for **81.2% of the patients**.

Correlation between MRI and pathology

Variab	le Statistic	1	2	3
N foci MRI				
0	n/N (%)	7/535(1.31%)	0/88 (0.00%)	0/42 (0.00
1	n/N (%)	405/535 (75.70%)	38/88 (43.18%)	9/42 (21.43
2	n/N (%)	60/535 (11.21%)	32/88 (36.36%)	7/42 (16.67
3	n/N (̂%)	12/535 (2.24%)	7/88 (7.95%)	9/42 (21.43
>=4	n/N (%)	51/535 (9.53%)	11/88 (12.50%)	17/42 (40.48

In **52.1% of the multifocal cases** reported on MRI, only **1 lesion** by the pathologist.

Result: potential increase in secondary ultrasounds and possibly biopsies.

RESULTS NUMBER OF ADENOPATHIES

Correlation between ultrasound and pathology

Variable	Statistic	0	1	2	3
N adenopathies ultrasound					
0	n/N (%)	582/600 (97.00%)	123/155 (79.35%)	49/66 (74.24%)	29/35(8
1	n/N (%)	15/600 (2.50%)	28/155 (18.06%)	10/66 (15.15%)	6/35 (
2	n/N (%)	1/600 (0.17%)	3/155 (1.94%)	2/66 (3.03%)	0/35 (
3	n/N (%)	0/600 (0.00%)	0/155 (0.00%)	1/66 (1.52%)	0/35 (
>=4	n/N (%)	2/600 (0.33%)	1/155 (0.65%)	4/66 (6.06%)	0/35 (

Considering adenopathies, the **false positive rate** of ultrasound was **3.0%**. The false negative rate was 68.3%.

RESULTS BREAST DENSITY & YEAR OF DIAGNOSIS

Impact breast density

Variable	Statistic	Туре А	Туре В	Туре С
Diameter difference (mm) Pathology - mammography	Ν	40	188	171
	Mean	12.88	12.09	16.53
	Std	22.705	19.217	22.257
	Median	6.00	7.00	10.00
	IQR	(-0.50; 20.50)	(0.00; 18.50)	(2.00; 25.00)
	Range	(-17.00; 90.00)	(-30.00; 118.00)	(-31.00; 88.00)

Results showed that a higher breast density level is associated with a larger difference between diameter on pathology versus mammography.

Impact year of diagnosis

	Correlation		
Association of Diameter (mm) pathology with	Statistics	ρ	95% Confidence Interv
Diameter (mm) mammography [2000-2004]	Spearman	0.540	(0.381; 0.666)
Diameter (mm) mammography [2005-2009]	Spearman	0.588	(0.468; 0.685)
Diameter (mm) mammography [2010-2014]	Spearman	0.649	(0.558; 0.723)
Diameter (mm) mammography [2015-2020]	Spearman	0.565	(0.470; 0.646)

<.0001 194 <.0001 232 Results revealed that the correlation between mammography and pathology differs significantly between periods, showing a significantly higher correlation in diameter in [2010-2014] compared to the other three periods.

This presentation is the intellectual property of the author/presenter. Contact them at karen.vanbaelen@kuleuven.be for permission to reprint and/or distribute.

>=4 0%) 18/36 (50.00%) 0%) 10/36 (27.78%) 0%) 2/36 (5.56%) 0%) 6/36 (16.67%)	• T ir tı • I
en pathology	si
	• It tl u
>=4 0%) 0/38 (0.00%) 3%) 8/38 (21.05%) 7%) 9/38 (23.68%) 3%) 9/38 (23.68%) 3%) 12/38 (31.58%)	• T ir
was reported unnecessary	lt i pri

	>=4
2.86%) 7.14%) 0.00%) 0.00%) 0.00%)	58/123 (47.15%) 38/123 (30.89%) 12/123 (9.76%) 4/123 (3.25%) 11/123 (8.94%)

CONCLUSIONS

- The local extent of pathology in ILC is underestimated by conventional maging techniques. Unlike previous reports, our results suggest that umor size of ILC is also underestimated by MRI.
- Jltrasound was inferior to mammography and MRI in estimating tumor ize in our series.
- was confirmed that mammography and MRI tends to overestimate he number of foci which might lead to unnecessary secondary ultrasounds and biopsies.
- The presurgical underestimation of lymph node involvement might ncrease the need of secondary surgeries.

is crucial to address these limitations in imaging of ILC and to ioritize the development of enhanced imaging techniques to improve diagnostic accuracy for these patients.

ABBREVIATIONS

- BC: Breast cancer
- ILC: Invasive lobular carcinoma
- MRI: Magnetic Resonance Imaging

REFERENCES

- 1. Van Baelen K. et al.; Ann Oncol 2022; 33, 769-785
- 2. Malhotra GK. et al.; Cancer Biology and Therapy 2010; 10, 955-960
- 3. Thomas M. et al.; Semin Oncol 2019; 46, 121-132
- 4. Pramod N. et al.; Oncologist 2021; 26, 943-953
- 5. Gruber I V. et al.; BMC Cancer 2013; 13, 328

ACKNOWLEDGEMENTS

This retrospective study was conducted as part of the Master's thesis of KVH at KU Leuven, pursuing a Master's degree in Biomedical Sciences.

KVB is funded by the KU Leuven Fund Nadine de Beauffort and a Conquer Cancer – Lobular Breast Cancer Alliance Young Investigator Award for Invasive Lobular Carcinoma Research, supported by Lobular Breast Cancer Alliance. Any opinions, findings, and conclusions expressed in this material are those of the author(s) and do not necessarily reflect those of the American Society of Clinical Oncology[®] or Conquer Cancer[®], or Lobular Breast Cancer Alliance.