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• Invasive lobular breast carcinoma (ILC) represents 15% of all invasive breast cancers
(BC), but it remains an understudied subtype

• Characterized by late relapse
• Loss of E-cadherin cell adhesion molecule and typical “single file” pattern of the cells
• The tumor microenvironment (TME) is the set of normal cells, molecules and blood

vessels that surround and feed a tumor cell
• Interaction between cancer cells and TME plays a role in defining prognosis in BC
• TME of ILC is characterized by low presence of TILs, and higher level of TILs are

associated to worse disease outcome

Background

Materials and Methods

Results

Figure 1. Tissue Section Spatial Transcriptomic Spots Visualize gene expression

Spatial transcriptomics

ST cohort Grade Nodal status Relapse
Tot G1 G2 G3 N0 N+ No Yes

N. of samples 43 5 34 4 30 13 34 9

Data

Cons:
• High cost
• Lower resolution than single-cell

Table 1.

• To characterize the spatial transcriptome heterogeneity of ILC including its tumor
microenvironment

• To interrogate whether spatial transcriptomics may improve the prediction of the risk
of recurrence in ILC

Objectives

Morphological annotation and 
co-occurrence analysis

H&E slides (Fig. 2a) were
annotated using QuPath (Fig. 2b)
reaching single cell resolution.
The level of co-occurrence (CO)
between tumor and each cell
type in the TME was computed
(for each cell type) as:

𝐶𝑂 =
𝑁.𝑚𝑖𝑥𝑒𝑑 𝑠𝑝𝑜𝑡𝑠
𝑁. 𝑡𝑢𝑚𝑜𝑟 𝑠𝑝𝑜𝑡𝑠

where “N. mixed spots” is the
number of ST spots containing
both tumor and the class of
interest and “N. tumor spots” is
the total number of tumor spots
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23 clusters were obtained across all
the samples. Some clusters were
sample-specific, other clusters were
shared between all the samples
(mainly normal structures, Fig.3a-b)

Morph. annotation
(% of each morph. class, 

per sample)

Co-occurrence
(for each morph. class 

with tumor, per sample)

Spot-level clustering
(% of each cluster, per 

sample) 
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ILC classification
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carcinoma

Tumor cells Acellular stroma, 
vessels

Adipose tissue, vessels

Stroma-related 
pathways

Proliferation-related 
pathways

Metabolic-related 
pathways

Metabolic and 
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The information coming from morphological and sequencing analyses was merged
and used to obtain a patient-level classification. Four classes were identified, defined
by differences in morphology and gene expression (Fig. 4a). Group-specific gene
signatures were built, and the four groups were retrieved on METABRIC (Fig. 4b),
where NSE group was associated to longer RFI (Fig. 4c). No overlap with PAM50 and
previous ILC classification was found (Fig. 4d)

Adipose tissue analysis

Higher co-occurrence level of adipose
tissue with tumor was associated to
worse disease outcome (Fig. 5a).
Adipocytes-tumor contact area was
enriched in metabolic-related (Fig. 5b)
pathways. Such contact area was also
enriched in macrophages M2 (from
xCell). The gene signature derived
from this contact area was associated
with bad prognosis in METABRIC, but
it wasn’t correlated to other
prognostic signatures in ILC.
Integrated with GGI, our signature
showed a high prognostic value (Fig.
5c)
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Pros:
• Spatial information
• Higher resolution than bulk RNA-seq

• Spatial transcriptomics (ST - Fig. 1) was performed on 43 ILC primary frozen
tumor samples (HR+, HER2-) from patients with long term follow up (Table 1.)

• Microarray ILC dataset (METABRIC, ILC = 122) was used as external validation
dataset
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• ILC is an understudied subtype, 
with peculiar biological and 
clinical features

• Spatial transcriptomics enables 
the analysis of the tumor
microenvironment in relation to 
its composition and organization

• Heterogeneity, both within 
individual patients (intra-patient) 
and between different patients 
(inter-patient), was observed in 
both morphology and gene 
expression

• The presence of this 
heterogeneity enabled the 
identification of four distinct ILC 
subgroups: normal-stroma 
enriched, proliferative, 
metabolic, metabolic-immune 
enriched

• These subtypes showed 
differences in prognosis also in 
external datasets

• Adipose tissue-tumor cells 
interactions were associated with 
worse disease outcome in ILC

• Metabolism seemed to play a key 
role in ILC biology


