Background

Invasive lobular breast carcinoma (ILC) represents 15% of all invasive breast cancers (IBC), but it remains an understudied subtype.

Characterized by late relapse

- Loss of E-cadherin in infiltrating epithelial cells and typical "single-file" pattern of the cells

- Tumor microenvironment (TME) is the set of normal cells, molecules and blood vessels that surround and feed a tumor cell

- Interaction between cancer cells and TME plays a role in defining prognosis in IBC

- TME of ILC is characterized by low presence of TILs, and higher level of TILs are associated to worse disease outcome

Morphological and co-occurrence analysis

Clustering analysis

Results

- Morph. co-occurrence (Fisher’s exact, % of each cluster, per sample)
- ILC classification

Adipose tissue

Adipocytes

Macrophages, in situ tumor-associated macrophages, defined as the sum of M1 and M2 macrophage gene sets

Table 1.

<table>
<thead>
<tr>
<th>H&E slides (Fig. 2a) were annotated using QuPath (Fig. 2b) reaching single cell resolution. The level of co-occurrence (CO) between tumor and each cell type in the TME was computed (for each cell type) as:</th>
</tr>
</thead>
</table>
| Where “% mixed spots” is the number of 23 spots containing both tumor and the class of interest and “% tumor spots” is the total number of tumor spots.

Materials and Methods

Spatial transcriptomics

- Spatial transcriptomics
- Higher resolution than bulk RNA-seq

Data

- Spatial transcriptomics (Fig. 1 - Table 1) was performed on 43 ILC primary frozen tumor samples (9H, HER2) from patients with long term follow up (Table 1.)

Objectives

To characterize the spatial transcriptome heterogeneity of ILC including its tumor microenvironment

To interrogate whether spatial transcriptomics may predict the probability of the risk of recurrence in ILC

Results

- Higher co-occurrence level of adipose tissue with tumor was associated to worse disease outcome (Fig. 5a).
- Adipocytes-tumor contact area was enriched in metabolic-related (Fig. 5b) pathways. Contact contact area was also enriched in macrophages M2 (Fig. 5c).

Take-home messages

- ILC is an understudied subtype, with peculiar biological and clinical features

- Spatial transcriptomics enables the analysis of the tumor microenvironment in relation to its composition and organization

- Heterogeneity, both within individual patients (intra-patient) and between different patients (inter-patient), was observed in both morphology and gene expression

- The presence of this heterogeneity enabled the identification of four distinct ILC subgroups: normal-stroma enriched, proliferative, metabolic, and immune enriched

- Some subtypes showed differences in prognosis also in external datasets

- Adipose-tissue-cancer interactions were associated with worse disease outcome in ILC

- Metabolism seemed to play a key role in ILC biology

Contact

Matteo Serra, Institut Jules Bordet – Université Libre de Bruxelles
Email: matteo.serra@hauts-douleurs.be
Twitter: @Matteo_Serra
LinkedIn: https://www.linkedin.com/in/matteo-serra-

References